Multilingual Grammatical Error Annotation: Combining Language-Agnostic Framework with Language-Specific Flexibility

http://open-writing-evaluation.github.io

Multilingual GEC Annotation Framework

- **Goal:** Develop a consistent, reusable framework for grammatical error annotation across typologically diverse languages.
- **Inspired by** the dataset-agnostic design of errant; extend its core philosophy to multilingual settings.
- Two-component architecture: a shared architecture that applies across languages (MRU: Missing, Replacement, and Unnecessary), and optional extensions tailored to language-specific features
- Structured templates for common error types (e.g., spelling, word order, word boundary) facilitate reuse across related languages.
- **Built on** the stanza NLP toolkit for tokenization and POS tagging in 70+ languages.
- **Easily extensible:** New languages can be supported with minimal adaptation.
- Available at https://github.com/open-writing-evaluation/jp errant bea.

Examples of Error Annotation for Czech and German

Without language-specific classification modules, our grammatical error annotation system remains capable of generating generic error annotations using the core MRU framework combined with POS labels.

Czech	S Mám velkou rodinu , tak nemohla jsem mít naději , že něco dostanu .
\overline{N} áplava et al. $(\overline{2022})$	A 5 7 R:WO jsem_nemohla REQUIRED -NONE- 0
Ours	A 5 7 R: VERB AUX -> AUX VERB jsem nemohla REQUIRED -NONE- 0
	('I have a big family, so I couldn't hope to get anything.')
German	S Dagegen wieder , bekommen BA Studenten die ein extra Jahr oder mehr studiert haben , leichter Jobs .
Boyd (2018)	A O 3 R:OTHER Dahingegen REQUIRED -NONE- O
	A 4 5 U:PNOUN REQUIRED -NONE- O
	A 5 6 R:NOUN BA-Studenten REQUIRED -NONE- O
Ours	A O 2 R:ADV ADV -> ADV Dahingegen REQUIRED -NONE- O
	A 2 3 U:PUNCT REQUIRED -NONE- O
	A 5 5 M:PUNCT - REQUIRED -NONE- O
	('On the other hand, BA students who have studied an extra year or more find jobs more easily again.')

Language-Specific Error Annotation

```
1: function ErrorClassification (\mathcal{S}, \mathcal{T}):
2: if (Sim (phonetic) > \alpha_1) \wedge (Sim (shape) > \alpha_2) then
3: return R:SPELL:PHONOGRAPHIC
4: else if (Sim (phonetic) > \alpha_1) then
5: return R:SPELL:PHONETIC
6: else if (Sim (shape) > \alpha_2) then
7: return R:SPELL:SHAPE
8: else if (Set (\mathcal{S}) == Set (\mathcal{T})) then
9: return R:WO
10: else if (Merge(\mathcal{S}) == Merge(\mathcal{T})) then
11: return R:WB
12: end if
13: return {R}
```

The algorithm above presents our proposed classification routine for Replacement errors. Given a pair of word sequences—the source (S) and the target (T)—the algorithm classifies the error into one of the following types: spelling errors (R:SPELL), word order errors (R:WO), or word boundary errors (R:WB). Spelling similarity is computed using two metrics: phonetic similarity and visual (shape-based) similarity. The thresholds α_1 and α_2 govern sensitivity to phonetic and visual matches, respectively.

The classification uses the following notation:

- \mathcal{S}, \mathcal{T} : word sequences in the source and target sentences.
- SIM(phonetic) and SIM(shape): similarity functions comparing pronunciation and visual form.
- SET(S): returns a bag-of-words representation of S, disregarding word order.
- Merge(S): reconstructs a character sequence from the tokenized input (i.e., merging tokens without spaces) to test for boundary alignment.

Examples of Replacement error types: phonetic spelling error (R:SPELL:PHONETIC), word order error (R:WO), and word boundary error (R:WB):

```
R:SPELL:PHONETIC their \rightarrow there
R:WO You can help me \rightarrow Can you help me
R:WB icecream \rightarrow ice cream
```


